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Crystallographic least squares are a fundamental tool for crystal structure

analysis. In this paper their properties are derived from functions estimating

the degree of similarity between two electron-density maps. The new approach

leads also to modifications of the standard least-squares procedures, potentially

able to improve their efficiency. The role of the scaling factor between observed

and model amplitudes is analysed: the concept of unlocated model is discussed

and its scattering contribution is combined with that arising from the located

model. Also, the possible use of an ancillary parameter, to be associated with

the classical weight related to the variance of the observed amplitudes, is

studied. The crystallographic discrepancy factors, basic tools often combined

with least-squares procedures in phasing approaches, are analysed. The

mathematical approach here described includes, as a special case, the so-called

vector refinement, used when accurate estimates of the target phases are

available.

1. Notation

�; �p, electron densities of the target and of the model struc-

ture, respectively.

�d ¼ �� �p, ideal difference electron density. Summed to �p it

exactly provides �, no matter the quality of �p.

N, number of atoms in the unit cell for the target structure.

Np, number of atoms in the unit cell for the model structure.

Usually Np � N, but it may also be Np > N.

fj, j = 1, . . . , N, atomic scattering factors for the target struc-

ture (thermal factor included).

Fh ¼ jFhj expði’hÞ ¼ Ah þ iBh ¼
PN

j¼1 fj expð2�ihrjÞ, structure

factor of the target structure.

Fph = jFphj expði’phÞ = Aph þ iBph =
Pp

j¼1 fj expð2�ihr0jÞ, where

r0j ¼ rj þ�rj. Structure factor of the model structure.

Fdh ¼ Fh � Fph = jFdhj expði’dhÞ, structure factor of the ideal

difference structure.P
N ¼

PN
j¼1 f 2

j ,
P

Np
¼
PNp

j¼1 f 2
j .

D ¼ hcosð2�h�rÞi, the average is performed per resolution

shell.

�A ¼ Dð�p=�NÞ
1=2:

�2
R ¼ hj�j

2
i=
P

N , hj�j2i is the measurement error.

e ¼ 1þ �2
R.

Ii(x), modified Bessel function of order i.

m = hcosð’� ’pÞi = I1ðXÞ=I0ðXÞ, where X = 2�AjEEpj=
ðe� �2

AÞ.

jEj and jEpj are the normalized structure-factor moduli

corresponding to F and Fp, respectively.

EDM, electron-density modification.

2. Introduction

Crystallographic least squares minimize a discrepancy func-

tion between observed and calculated structure-factor ampli-

tudes to optimize the structural parameters of the model given

the target diffraction amplitudes. They are usually based on

the Gauss–Newton approach: more recently maximum-

likelihood least-squares procedures (Bricogne, 1997; Pannu &

Read, 1996; Murshudov et al., 1997) have been introduced. All

such methods work in reciprocal space and rely on the

statistical properties of the structure factors. Their application

to observed diffraction amplitudes led to hundreds of thou-

sands of unbiased crystal structure models, the heritage of

modern crystallography.

Functions estimating the degree of similarity of two

electron-density maps were established a long time ago and

are used not only in the latest stages of the crystal structure

analysis but also in various steps of the phasing process. This

paper is mainly concerned with establishing in direct space

some functions estimating the degree of similarity between

the target and the model electron densities and, from

them, deriving least-squares procedures. As we will see, this

approach is potentially able to modify some aspects of the

standard crystallographic least squares. We will only consider

the Gauss–Newton method: our approach has only a spec-

ulative nature and provides the theoretical basis for future

applications.

Let us suppose that the target structure �ðrÞ has been

perfectly identified, and that jFhj and ’h are the corresponding
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amplitudes and phases, respectively. Let �pðrÞ be a structural

model available at a certain step of the phasing approach, to

which amplitudes jFphj and phases ’ph correspond. If we want

to assess the similarity between target and model, the integral

relationship

I ¼
R
V

�2
dðrÞ dr �

R
V

½�ðrÞ � �pðrÞ�
2 dr ð1Þ

should be calculated, no matter if in direct or in reciprocal

space. In this last caseZ
V

�2ðrÞ dr ¼
1

V

X
h

jFhj
2;

Z
V

�2
pðrÞ dr ¼

1

V

X
h

jFphj
2;

Z
V

�ðrÞ�pðrÞ dr ¼
1

V

X
h

jFhjjFphj cosð’h � ’phÞ;

and then

I ¼
1

V

X
h

jFdhj
2

¼
1

V

X
h

½jFhj
2
þ jFphj

2
� 2jFhjjFphj cosð’h � ’phÞ�: ð2Þ

The integral I, in reciprocal space, is therefore equal (but for

the scaling factor V�1) to the sum of the squared structure

factor of the ideal difference electron density �d. Such an

integral enjoys various good features: it vanishes when the

model coincides with the target and gets its maximum value

when the model is uncorrelated with the target. In this last

condition hcosð’h � ’phÞi is expected to vanish, and equation

(2) reduces to

1

V

X
h

ðjFhj
2
þ jFphj

2
Þ ¼

Z
V

½�2
ðrÞ þ �2

pðrÞ� dr:

I is strictly connected with crystallographic least squares.

Indeed minimizing equation (2) (for simplicity we omit the

constant term V�1) according to

I ’
P

h

½jFhj
2
þ jFphj

2
� 2jFhjjFphj cosð’h � ’phÞ� ¼ min ð3Þ

allows us to modify the model structural parameters (atomic

coordinates, vibrational parameters, site occupancy etc.)

provided jFhj, jFphj, ’h and ’ph are known. If the ’h values are

unknown (as occurs when a phasing attempt is started)

equation (3) cannot be applied: a simple way of overcoming

the difficulty is to associate to ’h its best current estimate of

the model phase, say

’h ’ ’ph: ð4Þ

Then equation (3) reduces to

IsðjFjÞ ¼
P

h

ðjFhj � jFphjÞ
2
¼ min; ð5Þ

which is only based on amplitudes and does not take phases

into account. Equation (5), however, is a special case of

equation (3), working only under the condition (4): therefore

equation (5) should work well or badly according to the

quality of the model. The condition (4) is not explicitly

considered in the standard Gauss–Newton least-squares

approach, but it agrees well with a well known limit of the

crystallographic least squares. Indeed the minimization of the

function Is for non-linear problems may be very complicated,

in particular it usually possesses numerous local extrema, so

that the least-squares procedure will converge to the correct

solution only if the model is sufficiently close to the target

[that is, only if equation (4) approximately holds], otherwise

the procedure will be trapped in a local minimum.

The discussion of equation (5) requires the preliminary

description of the basic relations used in the crystallographic

Gauss–Newton approaches. For this purpose we introduce

into equation (5) a scale factor g1t between observed and

calculated amplitudes, and the weight wh, which is expected to

be inversely proportional to the variance of the observation

[say wh ’ 1=�2ðjFjÞ] but would, in practice, also take other

types of error into account. The standard form of Is will then

be

IsðjFjÞ ¼
P

h

whðjFhj � g1tjFphjÞ
2
¼ min; ð6Þ

which is the function minimized by canonical least-squares

approaches (Busing et al., 1962; Rollett et al., 1976; Prince,

1994; Watkin, 2008).

We now explicitly recall the basics of the crystallographic

Gauss–Newton least-squares procedures because they will be

useful when modified forms for (6) are suggested. The mini-

mization of IsðjFjÞ may be achieved by requiring that

X
h

whðjFhj � g1tjFphjÞ
�jFphj

�xj

¼ 0; for j ¼ 1; . . . ; �; ð7Þ

where � is the number of structural parameters on which Fph

depends. If jFphj is expanded about the current model value

jFphjM as a function of the � parameters xk, say

jFphj ¼ jFphjM þ
X

k

�jFphj

�xk

�xk; ð8Þ

and if equation (8) is introduced into equation (7), we get

X
h

wh jFhj � g1tjFphjM � g1t

X
k

�jFphj

�xk

�xk

" #

�
�jFphj

�xj

¼ 0; for j ¼ 1; . . . ; �; ð9Þ

from which the canonical normal equations are obtained. In

matrix form

B�X ¼ D; ð10Þ

where

B ¼ g1t

X
h

wh

X
k

�jFphj

�xj

�jFphj

�xk

( )
; ð11Þ
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D ¼
X

h

wh½jFhjM � g1tjFphjM�
�jFphj

�xj

( )
ð12Þ

and �X is the parameter shift vector.

We will see in the next sections how equations (10)–(12)

may be modified. We only recall here that the derivative of

jFphj also depends on the phase ’ph.

It is well known that crystallographic structure refinement is

also performed via

IsðjFj
2
Þ ¼

P
h

whðjFhj
2
� g2tjFphj

2
Þ

2
¼ min : ð13Þ

The derivation of least-squares procedures from equation (13)

and their possible modifications are described in Appendix A.

Throughout this paper, the concept of missing structure

(that is, the part of the target structure not contained in the

model) will be discussed. It has been recently reconsidered by

Blanc et al. (2004), in combination with maximum-likelihood

techniques, for improving the efficiency of protein structure

refinement. The missing atoms were assumed to be statistically

distributed, and the calculated overall electron density was

assumed to be the sum of three components:

�ovðrÞ ¼ �pðrÞ þ �uðrÞ þ �solvðrÞ

representing, in order, the atomic positions of the located

fragment, the missing atom model and the bulk solvent.

Correspondingly, the calculated structure factor was assumed

to be the sum of three components:

Fovh ¼ Fph þ Fuh þ Fsolvh:

It was shown that, when the model is very incomplete, the bias

affecting model refinement is reduced.

In this paper, mostly directed at small- and medium-sized

structures, the solvent contribution will be neglected and more

simple hypotheses will be made.

3. About the classical scale factor in least-squares
procedures

Usually the jFphj’s are on the absolute scale while the jFhj’s

are on a relative scale. Minimizing the functionP
h whðg1tjFhj � jFphjÞ

2 is, however, not used because the

minimum could be found at g1t ¼ 0 and at extremely large

atomic vibrational motion. During the various least-squares

refinement cycles it is the structural model which must be

refined and not vice versa. This is the reason why g1t is asso-

ciated to jFphj rather than to jFhj, exactly as reported in

equation (6). From this equation g1t is usually estimated via

the relationship

g1t ¼

P
h whjFphjjFhjP

h whjFphj
2 ; ð14Þ

sometimes the simpler relation

g1t ¼

P
h jFhjP

h jFphj
ð15Þ

is used. The jFhj’s, rescaled by the factor 1=g1t, may work as

observations in subsequent cycles of least squares.

A question arises: is it really advisable to put the calculated

structure-factor amplitudes on the scale of the observed ones?

Such a practice is equivalent, in direct space, to making the

total electronic charge of the model equal to the total elec-

tronic charge of the target, even if the scattering powers of the

model and of the target densities are quite different. Or might

it be better in this situation if the two sets of amplitudes

remain on different scales? For example, if (Ne) and (Ne)M

denote the number of electrons belonging to the target and to

the model structure, respectively, might it be better if the two

scales are related by the factor (Ne)/(Ne)M?

The question is not negligible. Indeed, if we consider

equation (11), we see that the use of g only scales the ampli-

tudes of the elements of the matrix B, but, if we consider

equation (12), we see that the scale factor deeply modifies (in

magnitude and sign) the elements of the matrix D. Changing

the scales changes the elements of D, and therefore signs and

magnitudes of the parameter shifts may change too, so

modifying the efficiency of the least-squares procedure.

A valid reason for putting observed and calculated ampli-

tudes on the same scale is the following. If the scattering

power of the model is smaller than that of the target, but the

observed and the calculated amplitudes are obliged to stay on

their respective absolute scales, the minimization of Is, as

defined by equation (6), may be obtained by reducing the

vibrational motion of the model. Vice versa, if the scattering

power of the model is larger than that of the target, the

minimization may be obtained by increasing the vibrational

motion of the model. In both cases, undesired systematic

errors would be obtained.

On the other hand, using a scale factor which puts the

observed and the calculated amplitudes on the same scale is

numerically equivalent to pouring the scattering contribution

of the atoms not included in the model but present in the

target, into the scattering power of the model atoms. Indeed,

jFphj is replaced by

g1tjFphj ¼ jFphj þ ðg1t � 1ÞjFphj: ð16Þ

Using g1tjFphj in equation (6) or in any discrepancy factor

between observed and scaled calculated amplitudes is

equivalent to accepting the following assumptions:

(i) In the case where the set of target atoms includes the

model atoms (N > Np), then it is automatically implied that

the target atoms not belonging to the model provide (to

the overall calculated structure factor) the contribution

ðg1t � 1ÞjFphj expði’phÞ. That is, for any reflections (hkl), the

structure factors of the located and of the unlocated fragments

have the same phase and proportional amplitude.

(ii) In the case where the set of model atoms includes the

target atoms (N < Np), then the corresponding calculated

amplitudes are equally scaled to fit the target amplitudes.

In none of the two cases an ideal assumption is made.

research papers

38 Carmelo Giacovazzo � Direct-space discrepancy functions Acta Cryst. (2015). A71, 36–45



4. A modified scaling in least-squares procedures

Let us suppose that the jFhj amplitudes have been set on the

absolute scale by some statistical technique (e.g., by the

Wilson method) and that the scattering power of the model is

smaller than that of the target structure. Let us consider under

the above conditions a logic paradigm, condensed in a few

items:

(i) The prior knowledge of the chemical content of the

target unit cell is usually available. It is a valuable piece of

information because it allows us to estimate the total scat-

tering power
P

N at any s ¼ sin2�=�2.

(ii) If a model structure (from now on denoted as located

model), constituted by Np < N atomic positions with their

isotropic vibrational parameters, is available, the prior infor-

mation in (i) allows us to estimate the lack of the model

scattering power ð
P

Np
�
P

NÞ with respect to that of the

target structure.

(iii) In the absence of any information on the positions of

the missing atoms, the located model may be integrated by an

unlocated model component to which the structure factor Fuh

may be associated. Fuh has to be calculated via statistical

approaches, given the ignorance of the missing atomic posi-

tions (see below). In simple terms, if the located model is

constituted by Np < N atomic positions, the scattering powerP
N �

P
Np

of the N � Np atoms with undefined positions is

added to that of the located model.

(iv) Once Fuh has been determined for each h, the least-

squares procedure aiming at fixing the best values of the

structural parameters may be started. But now the calculated

structure factor is no longer given by Fph but by

Fovh ¼ ðFph þ FuhÞ ¼ jFovhj expði’ovhÞ

¼ jFphj expði’phÞ þ jFuhj expði’uhÞ:

When Np < N, in the absence of any prior information, we

assume Fuh ¼ jFuhj expði’phÞ so that jFovhj ¼ jFphj þ jFuhj and

’ovh ¼ ’ph. That is, the phase of the statistical structure factor

of the unlocated fragment is assumed to be that of the located

fragment, in full analogy with one of the implicit choices in the

usual scaling procedure [see equation (16)].

The value of jFuhj which brings the overall scattering

amplitudes of the integrated model on the observed (in our

hypothesis, absolute) amplitude scale may be refined by least

squares. For example, the observed reflections are subdivided

in resolution shells and, for each shell, jFuhj is found by

minimizing

I1nðjFjÞ ¼
P

h

wh½jFhj � jFphj � jFuhj�
2: ð17Þ

We then obtain

jFuhj ¼

P
h wh½jFhj � jFphj�P

h wh

¼ hjFhji � hjFphji; ð18Þ

where the averages are calculated over the resolution shell to

which h belongs.

A more general way of evaluating jFuhj, even applicable

when the observed amplitudes are on an arbitrary scale,

implies replacing hjFhji � hjFphji by a statistical estimate, such

as that provided by Wilson statistics. Then

jFuhj ’ q
P
N

ðshÞ

� �
�

P
p

ðshÞ

" #( )1=2

; ð19Þ

where q ¼ ð2=�Þ1=2 for centric space groups and q ¼ ð�1=2=2Þ

for acentric space groups. Consequently,

g1n ¼

P
h whjFovhjjFhjP

h whjFovhj
2 ð20Þ

or, more simply,

g1n ¼

P
h jFhjP

h jFovhj
ð21Þ

may be used for scaling. The potential advantage of introdu-

cing the concept of unlocated fragment is the following. Usual

scaling is equivalent to assuming that the target atoms not

included in the model provide a structure factor with phase

’uh ¼ ’ph and amplitude proportional to the amplitude of the

model atoms [say, equal to ðg1t � 1ÞjFphj]. According to the

second assumption, amplitudes calculated as large from the

located model are even more emphasized by the scaling factor,

while amplitudes calculated as small will remain small.

In our scaling approach the first assumption (say, ’uh ¼ ’ph)

is maintained, because we do not have any better estimate. On

the contrary, the second assumption (say, the structure-factor

amplitude of the unlocated fragment proportional to that of

the located fragment) is not supported. Indeed, this second

assumption is against any sensible statistical expectation,

because the atoms of the unlocated fragment are in unknown

positions: this lack of information allows us to estimate their

contribution via the more sound Wilson statistics.

Using equation (19) as the scattering amplitude of the

unlocated fragment implies that the contribution of the atoms

present in the target and not included in the model is assumed

to be proportional (in the absence of any information on their

positions) to their expected average amplitude. As a practical

consequence, if the scattering power of the model fragment is

negligible with respect to that of the target, the contribution of

the unlocated atoms is dominant, and the square amplitudes

corresponding to the integrated model will be close to
P

N.

jFphj will progressively become dominant for increasing values

of the scattering power of the located fragment. Accordingly,

when
P

N ¼
P

Np
, jFphj will represent the total structure

factor and Fuh will vanish. New and traditional scalings will

converge in the last steps of the crystal structure refinement.

We have now to adapt the standard least-squares equations

to the new paradigm, under the hypothesis that we have

already estimated Fuh for each resolution shell. Then

B ¼ g1n

X
h

wh

X
k

�ðjFovhjÞ

�xj

�ðjFovhjÞ

�xk

( )
; ð22Þ

D ¼
X

h

wh½jFhjM � g1njFovhjM�
�jFovhj

�xj

: ð23Þ
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The reader should notice that the only non-vanishing deriva-

tive of jFuhj is that with respect to the Wilson overall B factor.

It is not rare that the size of the model exceeds that of the

target structure (e.g., in ab initio phasing procedures, when the

phases are still far from the correct values). In this caseP
N �

P
Np

is expected to be negative for all the resolution

shells, and it may be assumed that

jFovhj expði’ovhÞ ¼ jFphj expði’phÞ þ jFuhj exp½ið’ph þ �Þ�

¼ ðjFphj � jFuhjÞ expði’phÞ:

jFuhj is found by minimizing

I1nðjFjÞ ¼
P

h

wh½jFhj � jFphj þ jFuhj�
2;

which leads to

jFuhj ¼ hjFphji � hjFhji:

Accordingly, if the jFphj’s are on the absolute scale, then

Fovh ¼ jFphj expði’phÞ þ q
P
Np

�
P
N

 !1=2

exp ið’ph þ �Þ; ð24Þ

which is equivalent to the following relations:

Fovh ¼ jFphj � q
P
Np

�
P
N

 !1=2
2
4

3
5 exp ið’phÞ

if jFphj> q
P
Np

�
P
N

 !1=2

;

otherwise

Fovh ¼ q
P
Np

�
P
N

 !1=2

� jFphj

2
4

3
5 exp ið’ph þ �Þ:

In the first case Fovh and Fph share the same phase ’ph, in the

second case they have opposite phases: that may be important

when Fovh is involved in least squares because the derivative of

jFovhj depends on the phase of Fovh (indeed weak reflections

for which Fovh and Fph have opposite phases would have a

larger leverage). In both the cases

jFovhj ¼ jFphj � q
P
Np

�
P
N

 !1=2
������

������: ð25Þ

5. About the crystallographic discrepancy factors

We analyse here the main properties of some statistical indices

used in crystallography to estimate the fitting between two

known structures. Let us still call the first structure target and

the second model, even if they may be completely uncorre-

lated, and let us suppose that both jFhj and jFphj are on their

absolute scales. At a given step of the phasing process the

misfit between model and target structure may be estimated

via the criterion

Rphas ¼

P
h jFdhj

2P
h jFhj

2

¼

P
h ½jFhj

2
þ jFphj

2
� 2jFhjjFphj cosð’h � ’phÞ�P

h jFhj
2

: ð26Þ

In direct space Rphas corresponds toR
V ½�ðrÞ � �pðrÞ�

2 drR
V �

2ðrÞ dr
;

which is an optimum criterion to measure the similarity of two

structures. Rphas vanishes when the model coincides with the

target. At the opposite extreme, when the model is uncorre-

lated with the target, it becomes

1þ

P
h jFphj

2P
h jFhj

2
; ð27Þ

which is expected to be close to 1 when the scattering power of

the model is a small fraction of the target, close to 2 if model

and target have the same scattering power. Rphas shows some

interesting properties:

(i) According to equation (26), Rphas is sensitive both to the

completeness of the model and to its quality. This property is

shared by the �A parameter (Srinivasan & Ramachandran,

1965), which represents the correlation between the normal-

ized square amplitudes of the model and of the target struc-

tures (Carrozzini, Cascarano, Giacovazzo & Mazzone, 2013).

(ii) The criterion

RðjFj2Þ ¼
P

h

½jFhj � jFphj�
2=

P
h

jFhj
2

� �
ð28Þ

is a special case of Rphas, obtained when equation (4) is satis-

fied. If the model is poor, the approximation (4) does not hold

and equation (28) becomes biased with respect to equation

(26). In other words, only for high-quality models [that is,

when the approximation (4) is satisfied] is RðjFj2Þ a good

approximation of Rphas, but it numerically diverges for poor

models.

(iii) The misfit between �ðrÞ and �pðrÞ, once Fourier trans-

formed, implies the misfit between the vectors Fh and Fph.

Taking only their moduli into consideration, like equation (28)

does, is an approximation not always acceptable when the

target structure is known. Indeed it may occur (more

frequently than we think today) that, because of some pseudo-

translational symmetry, two small values of equation (28) or

similar discrepancy indices may be calculated for two models,

one of which is definitively wrong, even if the corresponding

phases are remarkably different [see Cascarano et al. (2013)

for an example].

(iv) If �ðrÞ and �pðrÞ are referred by an allowed origin shift,

Rphas will reveal the misfit of the two maps, while discrepancy

indices based only on amplitudes are completely insensitive to

it. According to the purpose of the crystallographer, some-

times the insensitivity is preferred, sometimes it should be

avoided.
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Let us now consider the case in which the target structure is

unknown but a model is available. Then a very popular

criterion is

RtðjFjÞ ¼
P

h

½jjFhj � g1tjFphjj�=
P

h

jFhj

� �
; ð29Þ

where the scale factor g1t, calculated via equations (16) or (17),

sets the calculated amplitudes on the scale of the observed

amplitudes. RtðjFjÞ usually underestimates the misfit, because

the phase misfit is neglected; furthermore, the undesirable

statistical effects described in x4 occur.

If the unlocated fragment is involved in the calculations,

then the discrepancy factor may be written down as

RnðjFjÞ ¼
P

h

j½jFhj � g1njFovhj�j

� �
=
P

h

jFhj

� �
ð30Þ

with

g1n ¼

P
h jFhjP

h jFovhj

and

jFovhj ¼ jjFphj � jFuhjj:

The plus sign occurs when
P

Np
<
P

N and the minus sign

when
P

Np
>
P

N .

Frequently the misfit between normalized structure-factor

amplitudes jEhj (where Eh ¼ Fh=
P1=2

N ) is calculated as

RtðjEjÞ ¼
P

h

½jjEhj � jEphjj�=
P

h

jEhj

� �
:

Both jEhj and jEphj are by definition on their absolute scales

(indeed hjEhj
2
i ¼ hjEphj

2
i ¼ 1). RtðjEjÞ may also be rewritten

as

RtðjEjÞ ¼

P
h jjFhj � jFphjð

P
N =
P

Np
Þ

1=2
j

ð
P

h jFhjÞ
: ð31Þ

Equation (31) suggests that RtðjEjÞ is equivalent to RtðjFjÞ as

given by equation (29) provided jFhj and jFphj are on the same

scale. The use of the unlocated fragment modifies RtðjEjÞ into

RnðjEjÞ ¼
P

h

½jjEhj � jEovhjj�=
P

h

jEhj

� �
:

Let us now discuss the effects of the unlocated fragment on the

Pearson correlation coefficient:

CORR ¼

P
h jðjFhj � hjFhjiÞðjFphj � hjFphjiÞj

½
P

hðjFhj � hjFhjiÞ
2
�½
P

hðjFphj � hjFphjiÞ
2
�

	 
1=2
:

Since CORR is expressed in terms of uncentred moments, it is

invariant under scaling and is equal to the value assumed

when both model and target amplitudes are on the same scale.

CORR is therefore intrinsically insensitive to the incomple-

teness of the model.

6. An additional statistical parameter in least-squares
procedures

We have emphasized in x2 that the weight wh, a necessary

ingredient for obtaining an unbiased least-squares estimate

of the structural parameters, is expected to be inversely

proportional to the variance of the observed amplitude (in

practical applications additional criteria are used, but their

nature is not of interest for this paper). In the same x2 we also

reported, in equation (2), the explicit expression of the inte-

gral I, which, under the condition (4) and suitably minimized,

leads to the standard crystallographic least-squares formula

(6). The necessary intermediate step is the use of the relation

(4), the validity of which varies with the quality of the model.

If we consider equation (2) as the source of least squares, we

should accept the idea that least squares may benefit by a

supplementary parameter, say mh, to be coupled with the

weight wh, and taking into account the reliability of the rela-

tion (4). The problem may be solved by rewriting equation (2)

in the form

I ¼
1

V

X
h

jjFhj expði’hÞ � jFphj expði’phÞj
2

ð32Þ

and by replacing the unknown phase factor expði’hÞ =

cos’h þ i sin ’h by its expected value (see Sim, 1959; Srini-

vasan & Ramachandran, 1965; Read, 1986; Carrozzini,

Cascarano, Giacovazzo & Mazzone, 2013): i.e.,

hexpði’hÞi ¼ hcos ’hi expði’phÞ ¼ mh expði’phÞ: ð33Þ

In this case the standard least-squares equation (6) is modified

into

Is ¼
P

h

whðmhjFhj � gjFphjÞ
2
¼ min : ð34Þ

In its turn, equation (34) is related to the standard least-

squares equation (7) as follows: both derive from equation (3),

but in the first case we used the constraint ’h ’ ’ph, while in

the second we applied the condition cosð’h � ’phÞ ’ mh [or,

equivalently, we imposed the condition (33)]. This second

constraint is less severe than the first.

The relation (34) has however a handicap: mh, and there-

fore mhjFhj, is continuously refined during the least-squares

cycles, against the canonical rule according to which the

observations should remain unmodified during the refinement.

If equation (34) is applied, a minimum may be attained at g =

0, even with a model uncorrelated with the target: then mh ’ 0

for most of the reflections, and extremely large thermal

motion might arise from least-squares cycles. The handicap

may be overcome by using the relation

hexpði’phÞi ¼ mh expði’hÞ ð35Þ

instead of equation (33): now i’h is considered fixed, even if

unknown, while ’ph is distributed around it.

Equation (35) is symmetric to equation (33) but is equally

legitimate. Indeed, if the unknown ’h value is expected to be

close to the known ’ph value, in an equivalent way we can state

that, according to equation (35), ’ph is expected to be close to
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’h no matter if ’h is unknown. Then the standard least-squares

equation becomesP
h

whðjFhj � g1tmhjFphjÞ
2
¼ min : ð36Þ

The use of equation (36) leads again to equation (10) but now

B ¼ g1t

X
h

whmh

X
k

�jFphj

�xj

�jFphj

�xk

( )
; ð37Þ

D ¼
X

h

whðjFhj � g1tmhjFphjMÞ
�jFphj

�xj

( )
ð38Þ

and

g1t ¼

P
h whmhjFphjjFhjP

h whm2
hjFphj

2

or

g1t ¼

P
h jFhjP

h mhjFphj
:

For high-quality models, equations (37) and (38) are equiva-

lent to equations (11) and (12), respectively (where m = 1 for

each structure factor). But, if the model is weakly correlated

with the target, the parameter mh may vary strongly from one

reflection to another, and, for bad models, may frequently fall

close to zero. As a consequence, the elements of the matrix B

and of the vector D, respectively, are expected to be very

different from the corresponding elements in equations (11)

and (12). Indeed, the introduction of the parameter mh may

change not only the moduli but also the signs of the elements

of the D vector (so changing the directions of some structural

parameter shifts), and may also strongly change the scale

factor.

From the above observations it is evident that the use of the

statistical parameter m does not aim at obtaining lower values

of the crystallographic discrepancy indices, but mainly aims at

increasing the least-square convergence when poor models are

available.

The use of equations (37) and (38) has the same handicaps

described for equation (6) in x3, probably made more critical

by the use of the reliability parameter mh. It may therefore be

useful to introduce in the least-squares treatment the scat-

tering of the unlocated model, as described in x4. The function

to minimize is againP
h

wh½jFhj � g1njFovhj�
2:

If the model scattering power is smaller than that of the target,

then

jFovhj expði’ovhÞ ¼ jFphj expði’phÞ þ jFuhj expði’phÞ

¼ mhðjFphj þ jFuhjÞ expði’hÞ:

that is, in the absence of prior information, the same reliability

value mh may be associated to the probability that both ’ph

and ’uh are close to ’h. Then

jFovhj ¼ mhðjFphj þ jFuhjÞ; ’ovh ¼ ’h:

Furthermore

jFuhj ¼ hjFhji � hjFphji ¼ q
P
N

�
P
Np

 !1=2

:

If the model scattering power is larger than that of the target,

then

jFovhj expði’ovhÞ ¼ jFphj expði’phÞ þ jFuhj exp½ið’ph þ �Þ�

¼ mhðjFphj � jFuhjÞ expði’hÞ:

In the absence of prior information, the same reliability value

mh may be associated to the probability that ’ph is close to ’h

and that ’uh is close to ’h þ �. Since

jFuhj ¼ hjFphji � hjFhji ¼ q
P
Np

�
P
N

 !1=2

we have

Fovh ¼ mh jFphj expði’phÞ þ q
P
Np

�
P
N

 !1=2

exp ið’ph þ �Þ

2
4

3
5;

which is equivalent to the following relations:

Fovh ¼ mh jFphj � q
P
Np

�
P
N

 !1=2
2
4

3
5 exp ið’phÞ

if jFphj> q
P
Np

�
P
N

 !1=2

;

otherwise

Fovh ¼ mh q
P
Np

�
P
N

 !1=2

� jFphj

2
4

3
5 exp ið’ph þ �Þ:

It may be important to distinguish between the two alter-

natives owing to the fact that, when Fovh is involved in least

squares, the derivative of jFovhj depends on the phase of ’ovh.

In both cases

jFovhj ¼ jjFphj � jFuhjj ¼ jFphj � q
P
Np

�
P
N

 !1=2
������

������: ð39Þ

Then equations (10), (22) and (23) are again obtained, but

now mh has been incorporated into Fovh. That changes the

absolute values of the derivatives in equation (22) and also

may change the modulus and sign of the elements of the D

vector in equation (23).

7. Phase-driven least squares: the vector refinement

We noticed in x2 that minimizing equation (2) leads to equa-

tion (6) provided the condition ’h ¼ ’ph holds. If some

previous information on ’h is available, then the more general

expression (3) may be used, which may also be rewritten in the

form
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I ¼
P

h

jjFhj expði’hÞ � jFphj expði’phÞj
2
¼
P

h

jFqhj
2
¼ min :

ð40Þ

The expression (40) corresponds to the most complete appli-

cation of equation (3). Indeed:

(i) It is equivalent to minimizing the jFqhj amplitudes, and is

referred to in the literature (Arnold & Rossmann, 1988) as

vector refinement.

(ii) It doubles [with respect to equation (6)] the number of

observational equations, because it minimizes functions of

amplitudes and of phases. Indeed equation (40) may also be

written asP
h

wh½ðAh � AphÞ
2
þ ðBh � BphÞ

2
� ¼ min; ð41Þ

which directly leads, in accordance with Arnold & Rossmann,

to the elements of the least-squares normal matrixX
h

wh

@Aph

@xj

@Aph

@xk

þ
@Bph

@xj

@Bph

@xk

� �
; for parameters j; k;

and to the gradient vector elementsX
h

wh

@Aph

@xk

�Ah þ
@Bph

@xk

�Bh

� �
;

where

�Ah ¼ Ah � ðAphÞM; �Bh ¼ Bh � ðBphÞM:

(iii) It optimizes the fit of the molecular model to the

electron density calculated by using observed amplitudes and

’h phases.

It was suggested by Arnold & Rossmann that the pure

vector refinement is appropriate when exceedingly good phase

information is available, as may occur in virus crystallography

where non-crystallographic symmetry may be employed to

improve the molecular-replacement phases. The combination

of vector and scalar refinement was suggested in less favour-

able cases like isomorphous replacement. More recently,

restrained vector refinement has been implemented in

REFMAC (Murshudov et al., 1997) via maximum-likelihood

techniques to refine protein model structures.

We describe here some potential applications of uncon-

strained and constrained least-squares vector refinement in

small and large molecules, in situations that were not consid-

ered by previous authors.

Let us suppose that the model structure available at the end

of a least-squares procedure is a very rough approximation of

the target, and that additional least-squares cycles are unable

to improve it. That frequently occurs when the model is

severely incomplete and/or when there is a large misfit

between the model and the target atomic coordinates. In this

case, even if least squares do not converge to the target

structure, other techniques less sensitive to model errors may

reduce the phase bias: e.g., EDM techniques may reduce by

5–20	 the average phase error calculated for the best least-

squares model. This point seems today to be of particular

interest because EDM techniques have been recently powered

by a new entry like the VLD (Vive la Difference) approach

(Burla, Carrozzini et al., 2011; Burla, Giacovazzo & Polidori,

2011; Burla et al., 2012), originally designed for ab initio

phasing but extremely efficient for improving phases in non-ab

initio methods (Carrozzini, Cascarano, Comunale et al., 2013).

The above considerations suggest a new opportunity, of

interest when the model is weakly correlated with the target:

to design an interaction between least squares and EDM

techniques, deeper than in current procedures. Let us consider

two examples.

In ab initio phasing techniques for small- and medium-sized

molecules, at a certain step of the phasing approach, a mole-

cular model may be obtained by a simple (even if guided by

basic crystal chemical rules) peak search procedure applied to

the current electron-density map. If the model is of low quality

it will hardly converge to the target structure when submitted

to least-squares cycles. However the best set of phases f’phg

(i.e., that corresponding to the best least-squares model)

may be used as a starting point for the application of EDM

techniques. These may end with a set of phases (say f’hg)

remarkably better than the set f’phtg. That opens two alter-

natives:

(i) The electron density calculated via the set f’hg may be

chemically interpreted and used to construct a new molecular

model which may again be submitted to EDM procedures and

after to standard least squares, and so on cyclically. That

corresponds to the usual refinement procedure.

(ii) Least squares may be modified in such a way to profit

not only by the amplitudes fjFphjg and fjFhjg, but also by the

sets f’phg and f’hg. In this case, the modified least-squares

procedure would lead to a model automatically fitting the best

electron density corresponding to the phases f’hg, without

passing through the model-building step.

As a second and more interesting example, let us consider a

molecular-replacement case, where a low-quality molecular

model (e.g., with a degree of similarity with the target of less

than 30%) has been submitted to molecular-replacement

techniques and has been correctly oriented and located. The

standard methods for phasing the target structure very likely

fail because of the model bias. The use of vector refinement

like that implemented in REFMAC may be able to auto-

matically fit the model to the new electron density without

passing through the model-building step, which may fail if the

electron density is still of poor quality.

Additional criteria like the introduction of the reliability

parameter mh into the vector-refinement procedure may be

easily accomplished if the minimization ofP
h

wh½ðAh �mhAphÞ
2
þ ðBh �mhBphÞ

2
�

is performed.

8. Conclusions

This paper shows that crystallographic least-squares proper-

ties may be derived from direct-space functions, establishing

the similarity between two electron-density maps. The

approach is also able to suggest modified procedures poten-
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tially able to improve the least-squares efficiency. The concept

of the unlocated fragment is introduced to analyse the scaling

procedures more frequently used to scale diffraction ampli-

tudes, the crystallographic discrepancy criteria are discussed

and the vector-refinement method is obtained as a special case

of the new paradigm. The approach is purely speculative: the

applications are not part of this paper, which only provides

the theoretical basis for future applications.

APPENDIX A
When the crystallographic structure refinement is

performed via |F |2 refinement, the discrepancy integral may be

described by equation (13). Minimizing such IsðjFj
2
Þ requires

that

X
h

whðjFhj
2
� g2tjFphj

2
Þ
�jFphj

2

�xj

¼ 0; for j ¼ 1; . . . ; �:

If jFphj
2 is expanded about the current model value jFphj

2
M as a

function of the � parameters xk, say

jFphj
2
¼ jFphj

2
M þ

X
k

�jFphj
2

�xk

�xk;

and if the relation �jFphj
2=�xk ¼ 2jFphj�jFphj=�xk is taken into

account, then equation (10) is again obtained but

B ¼

(
2g2t

X
h

whjFphj
2
M

X
k

�jFphj

�xj

�jFphj

�xk

)
; ð42Þ

D ¼

(X
h

whjFphjM½jFhj
2
M � g2tjFphj

2
M�
�jFphj

�xj

)
: ð43Þ

Scaling between observed and calculated square amplitudes is

obtained via

g2t ¼

P
h whjFphj

2
jFhj

2P
h whjFphj

4
ð44Þ

or via the simpler relation

g2t ¼

P
h jFhj

2P
h jFphj

2 : ð45Þ

Hold for such scaling the same considerations described in x3

for the standard scaling procedure in the case of |F | refine-

ment: that is, if the set of target atoms includes the model

atoms, the structure factors of the located and of the unlocated

fragments are assumed to have the same phase and propor-

tional amplitude, an improper statistical behaviour. To over-

come this problem the paradigm of the unlocated fragment

may be introduced: e.g., when
P

N >
P

p then

jFuhj
2
¼ hjFhj

2
i � hjFphj

2
i ¼

P
N

ðshÞ �
P

p

ðshÞ

" #
:

In this case jFovhj
2
¼ jFphj

2
þ jFuhj

2 and scaling may be

performed via

g2n ¼

P
h whjFhj

2
jFovhj

2P
h whjFovhj

4 ð46Þ

or, more simply, via

g2n ¼

P
h jFhj

2P
h jFovj

2
: ð47Þ

The use of the unlocated fragment paradigm transforms

equations (42) and (43) into

B ¼

(
2g2n

X
h

whjFovhj
2
M

X
k

�jFovhj

�xj

�jFovhj

�xk

)
ð48Þ

and

D ¼

(X
h

whjFovhjM½jFhj
2
M � g2njFovhj

2
M�
�jFovhj

�xj

)
; ð49Þ

respectively.

Corresponding modifications should be applied to the usual

discrepancy criterion between two structures, say to

RtðjFj
2
Þ ¼

P
h

jjFhj
2
� g2tjFphj

2
j=

P
h

jFhj
2

� �
; ð50Þ

where g2t is calculated via equation (44) or equation (45). If

the concept of unlocated model described in x4 is used, then

RtðjFj
2
Þ is replaced by

RnðjFj
2
Þ ¼

P
h

½jjFhj
2
� g2nðjFphj

2
� jFuhj

2
Þj�

� �
=
X

h

jFhj
2

 !
;

ð51Þ

where g2n is calculated via equations (46) or (47).

I heartily thank Giovanni Luca Cascarano for very useful

discussions.
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